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LE'ITER TO THE EDITOR 

The pinning of an interface by a planar defect 
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Heidelberg, FRG 

Received 18 June 1982 

Abstract. The behaviour of a domain wall is examined in a three-dimensional Ising model 
which has weaker exchange interactions near the surface than in the bulk. It is proved, 
within the Onsager-Temperley approximation, that the domain wall has a phase transition, 
being bound to the surface at low temperatures but not at high temperatures. 

The theorem due to Hohenberg (1967), Mermin and Wagner (1966), on the absence 
of long-range order in certain one- and two-dimensional systems, provides a helpful 
context in which to discuss phase separation. An interface between a liquid and its 
vapour, in the limit of zero stabilising gravitational field, has a continuous symmetry 
under vertical translations, and is disordered, in the sense that the mean-square height 
difference between two points on the interface diverges logarithmically with their 
horizontal separation. The fluctuations of a one-dimensional interface in an equivalent 
model with two bulk dimensions are still stronger, resulting in a linear divergence of 
the same quantity. The relevant Goldstone modes which give rise to this disorder are 
long-wavelength capillary ripples. 

Domain walls in homogeneous king models have only a discrete translational 
symmetry, and so these considerations do not apply directly. Nevertheless, a domain 
wall in the planar Ising model behaves in a similar fashion, having unbounded 
fluctuations from its ground-state position in the thermodynamic limit (Abraham and 
Reed 1974). There is also a range of evidence (Weeks et a1 1973, Chui and Weeks 
1976, van Beijeren 1977) to suggest that, at temperatures only a little below the Curie 
point, interfacial fluctuations in the three-dimensional Ising model are not grossly 
affected by the lattice. However, it has been proved (Dobrushin 1972, Gallavotti 
1972, Abraham and Heilmann 1976) that at low temperatures, excitations are 
sufficiently suppressed by the discrete nature of the system for the domain wall to 
have a finite intrinsic width. The phase transition between the two states of the 
interface is known as the roughening transition (reviewed by Weeks and Gilmer, 1979). 

Recently, the effects of a more extreme breaking of translational symmetry have 
been studied in the planar Ising model. Abraham (1980) has shown that a row of 
weakened exchange bonds next to one edge of the model will bind an interface at 
low temperatures, and that there is an unbinding transition, at a temperature below 
the Curie point, to a diffuse phase in which the interfacial free energy is dominated 
by the entropy gain from wandering, rather than the pinning energy. The purpose of 
this letter is to describe a proof that there is a similar transition for a related interfacial 
model in three bulk dimensions. Previous work, using mean-field theory (Burkhardt 
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and Vieira 1981) and a duality relation (Chalker 1982a), has anticipated the conclusion 
but not provided any rigorous information. 

Consider a simple cubic lattice constructed from M horizontal, square planes, each 
containing (N + 2)2 sites, arranged in a vertical column. At each site there is an Ising 
spin, s, taking the values s = *$. The spins interact through nearest-neighbour, 
ferromagnetic exchange bonds which are of strengths J in the horizontal directions, 
and J ,  in the vertical direction, except for those joining the lowest two planes, which 
are weaker by an amount A. The spins in the lowest plane of the lattice are constrained 
to have the value s = - 4, and those on the remainder of the lattice surface are limited 
to s = +$, thus ensuring the presence of an interface. At temperatures below the 
Curie point a spontaneous magnetisation is to be expected, which will be positive in 
the upper part of the system, and negative in the lower lattice planes. If the thickness 
of the negatively magnetised layer is finite in the thermodynamic limit, the domain 
wall may be said to be bound by the weakened bonds. 

The Onsager-Temperley (Temperley 1952) sheet, or solid-on-solid approximation, 
provides a way of focusing attention on interfacial behaviour and ignoring bulk 
fluctuations; it has proved remarkably successful in treating the unbinding transition 
in two bulk dimensions (Burkhardt 1981, Chalker 1981, 1982b, Chui and Weeks 
1981, Kroll 1981, van Leeuwen and Hilhorst 1981). The approximation consists of 
omitting all those configurations of the king model described above in which there 
is a down spin vertically above an up spin. The remaining, allowed configurations 
may be more conveniently specified by introducing a new set of variables, ‘columns’, 
instead of the original spins. The column variables, {hi},  are defined on the sites, {i}, 
of the lowest plane of the original lattice: in each allowed configuration, U, the value 
of hi is the height, in lattice units, of the highest down spin vertically above the site 
i. Hence, on the 4(N + 1) boundary sites the column heights are fixed at zero, but on 
the N2 remaining, interior sites they may separately take any non-negative integer 
value (in the limit M + 03). The energy of a configuration, E(u) ,  relative to that of 
the ground state, is 

Z(ij) is a sum over all nearest-neighbour pairs of sites; and v(a) = Z: Shr.O, Cl being a 
sum over all interior sites and &,.o the Kronecker delta. The set of all allowed 
configurations is denoted by d. The canonical probability, pm for the state U is 

U € d  

with @ the inverse temperature. 
An order parameter for the unbinding transition is 

which measures the proportion of columns on internal sites taking the value zero: 
clearly 0 s p N  s 1. If limN+, PN = 0, the interface is unbound, whilst if limN-.- PN > 0, 
it is bound. The exact results which will be proved are: 

(i) if (e-BA+e-4p’) > 1, 

then lim PN = O ;  
N-m 
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then lim PN 3 [ 1 +In( 1 - 8x)] > 0. (4b ) 

Thus, for any given pair of positive values for J and A, there is a temperature below 
which the interface is certainly bound and another, higher one above which it is 
certainly unbound. 

N-oo 

Proof of (i) 

Let 4 8 ~  denote the set of configurations, U, for which v(a)>M. Then 

From each state U, 2”‘“’ different states, ~ [ a ] ,  a = 1 , 2 . .  .2“”’ , may be constructed 
according to the following prescription: (a ) ,  increase the value of the column variable 
on every internal site by one, unless it has the value zero in the state (T; and (b) ,  allow 
all possible combinations of the values zero and one for these v (U) remaining variables 
on internal sites, which were left unaltered under (a).  Let %M be the set of configur- 
ations coistructed in this way from those in BM. Note that two states, ~ [ a ]  and 
~’[a’], constructed from different original states, U and U’, are necessarily different. 
The energy of the state ~ [ a ]  satisfies the inequality 

E(u[~])CE(U)+~NJ+~JV(U[~])+A[V(U)-V(U[~])] (6) 

exp[ -~~(cr [a ] ) ]bexp[ -~ (~ (a )  + 4 ~ ~ ) ] ( e - ~ ~ + e - ~ ~ ~ ) ” ‘ “ ’ .  (7) 

so that 
2”(0) 

u=1 

and hence an upper bound on pN 

p N  c e4NBJ/(e-BA+e-4BJ)M +M/N’. (9) 
With, for example, the choice M = N3” in equation (9), the result (i) is obtained. 

Proof of (ii) 

If the interface is strongly bound to the defect plane, so that in a typical configuration 
most column heights have the value zero, then it is more natural to describe con- 
figurations by specifying heights and positions of non-zero columns, rather than the 
heights of all columns. To this end, we introduce some definitions. 

The Ith n-site connected cluster, C,,, is a particular group of n interior lattice sites 
with the property that any site in the cluster can be reached from any other, along a 
path of nearest-neighbour bonds, without crossing a site which is not part of the 
cluster. Let C& be the sites which are nearest neighbours to those in Gin, but which 
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are not members of CL,. It will be useful to associate with each cluster n nearest- 
neighbour bonds. Of these, (n - 1) are to be chosen so that they interconnect all sites 
in the cluster, in the sense of forming the paths described above, and the remaining 
one is to join a site in Cl,, to one in C?,. 

For a given configuration of the model, the cluster Cl,, is said to be excited if and 
only if: hi > 0, Vi E C,,,  and h, = 0, Vi E C:, ; the variable Xl,,(v) takes the value one 
in this case and is zero otherwise. A state is completely defined by the values of 
Xl,,(a), for all I and n, together with, for each excited cluster, Cl,,,, n values of (hi -hi), 
where the n pairs of sites, i and j ,  are those at the ends of the bonds associated with 
that cluster. The energy, E(a) ,  of the state a satisfies the inequality 

where is a sum over all nearest-neighbour pairs of sites, excepting those where 
one or both sites belong to a particular cluster, Cl,,, and Z("&) is i! sum over the n pairs 
of sites joined by the bonds associated with that given cluster. A crucial stage of the 
argument is to find an upper bound on the thermal expectation value of X, , (a ) .  Let 
al,,, be the set of states in which hi = 0, Vi E Ct,,, U C?,. Then, using equation (10) 

c e-eE(u)X l ,n ( m ) s  1 e-BE(u7(e-eA h=-m 2 e-511hl )n (11) 

since all the states for which Xr,,(a) = 1 can be obtained from those in the set a[,,, by 
altering just the values of the column variables on the sites belonging to the cluster 
Cl,,,. A lower bound on 2 is 2 3 XuE9i,n e 

U E d  U ' E 9 1 . n  

so that - P E ( u )  

where x is defined in equation (46 ). 
The order parameter can be expressed in terms of the variables Xl,, (F) 

Finally, a crude upper limit to the number, Nn, of n-site connected clusters on the 
lattice is, from consideration of a Cayley tree of the same coordination number (Leath 
1976), N28"n-' aN,, leading to 

The result (ii) follows immediately. 

The financial support of the Science and Engineering Research Council (UK) is 
gratefully acknowledged. 
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